

Index for Troy Raen’s Docs

Troy Raen's Docs

	Connecting to TOM Toolkit
	Register an app

	Build in RTD

	Run StreamPython locally

	Message size

Index for (other) Docs

Overview

	Basic Code Workflow

	How to integrate with TOM Toolkit

	Authentication

API

	StreamRest

	StreamPython

	DatabasePython

Connecting to TOM Toolkit

	TOM Toolkit [https://tom-toolkit.readthedocs.io/en/stable/index.html]

	tom_desc [https://github.com/LSSTDESC/tom_desc]

	ingestmessages.py [https://github.com/LSSTDESC/tom_desc/blob/main/stream/management/commands/ingestmessages.py] (ingest SCIMMA)

	tom_fink [https://github.com/TOMToolkit/tom_fink/blob/main/tom_fink/fink.py]

ToDo:

	run Django

	run TOM

	run tom_desc

	run tom_fink

	change ingestmessages.py to listen to our stream

	add us as a tom_toolkit module

	Following TOM Toolkit Getting Started [https://tom-toolkit.readthedocs.io/en/stable/introduction/getting_started.html]

conda create --name tom python=3.7
conda activate tom

use mypgb test account
export GOOGLE_CLOUD_PROJECT="pitt-broker-user-project"
export GOOGLE_APPLICATION_CREDENTIALS="/Users/troyraen/Documents/broker/repo/GCP_auth_key-pitt_broker_user_project.json"
export GOOGLE_APPLICATION_CREDENTIALS=/Users/troyraen/Documents/broker/repo/GCP_auth_key-mypgb-raentroy.json
export PITTGOOGLE_OAUTH_CLIENT_ID="187635371164-eoeg3i6vp4bcd26p7l8cvjir3ga6nb7a.apps.googleusercontent.com"

export PITTGOOGLE_OAUTH_CLIENT_ID="591409139500-hb4506vjuao7nvq40k509n7lljf3o3oo.apps.googleusercontent.com"
export PITTGOOGLE_OAUTH_CLIENT_SECRET=""
/Users/troyraen/Documents/broker/repo/GCP_oauth-client_secret.json

add tom_pittgoogle to path
python -m pip install -e .
export PYTHONPATH="${PYTHONPATH}:/Users/troyraen/Documents/broker/tom/tom_pittgoogle"
export DJANGO_SETTINGS_MODULE=tom_pittgoogle.settings

export PYTHONPATH="${PYTHONPATH}:/Users/troyraen/Documents/broker/tommy/tommy"
export DJANGO_SETTINGS_MODULE=tommy.settings
export DJANGO_SETTINGS_MODULE="tom_desc.settings"

pip install requests requests_oauthlib
pip install google-cloud-bigquery
pip install google-cloud-pubsub
pip install fastavro
pip install requests_oauthlib

pip install tomtoolkit
pip install whitenoise
pip install psycopg2
create a new project
django-admin startproject tommy

cd tommy

edit settings to add tom_setup. then:
./manage.py tom_setup
./manage.py migrate
./manage.py runserver
navigate to http://127.0.0.1:8000/

to make updates
./manage.py makemigrations
./manage.py migrate
./manage.py runserver

Register an app

import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'tommy.settings')
application = get_wsgi_application()

Add some things from our Broker-Web [https://github.com/mwvgroup/Broker-Web]

Print more helpful errors for
RuntimeError("populate() isn't reentrant")

	edit django/apps/registry.py as described here [https://stackoverflow.com/questions/27093746/django-stops-working-with-runtimeerror-populate-isnt-reentrant]

Build in RTD

export BUILD_IN_RTD=True
export DJANGO_SETTINGS_MODULE=tom_pittgoogle.settings
export SECRET_KEY='4iq)g7qh+1+0g03$!3kx0@*=v!#2ioi@^-f=-^ix6l(z7c_6d8'

Put at top of python modules, if needed:

import os
import troy_fncs as tfncs
settings = tfncs.AttributeDict({
 'GOOGLE_CLOUD_PROJECT': os.getenv('GOOGLE_CLOUD_PROJECT'),
 'PITTGOOGLE_OAUTH_CLIENT_ID': '591409139500-hb4506vjuao7nvq40k509n7lljf3o3oo.apps.googleusercontent.com',
 'PITTGOOGLE_OAUTH_CLIENT_SECRET': "<FILL-IN>",
})

Run StreamPython locally

clean_params = {
 'subscription_name': 'ztf-loop',
 'classtar_threshold': None,
 'classtar_gt_lt': 'gt',
 'max_results': 100,

}

Message size

from python_fncs.pubsub_consumer import Consumer as Consumer

consumer = Consumer('ztf-loop')
msgs = consumer.stream_alerts(parameters={'max_results': 1, 'max_backlog': 1})
msg = msgs[0]
msg.size # bytes
result is: 67362

1 TiB ~= 1.6e7 alerts = $40

Basic Code Workflow

Each implementation does things a bit differently, but they share a basic workflow:

The Broker instantiates a Consumer and uses it to fetch, unpack, and
process alerts.

The Consumer can accept a user filter and return only alerts that pass.

Here is a compact but working example of a Broker’s fetch_alerts method for the
StreamRest implementation.

def fetch_alerts(self):
 from consumer_stream_rest import ConsumerStreamRest

 subscription_name = "ztf-loop"
 max_messages = 10
 lighten_alerts = True # flatten the alert dict and drop extra fields. optional.
 # If you pass a callback function, the Consumer will run each alert through it.
 # Optional. Useful for user filters. Here's a basic demo.
 def user_filter(alert_dict):
 passes_filter = True
 if passes_filter:
 return alert_dict
 else:
 return None
 callback = user_filter

 consumer = ConsumerStreamRest(subscription_name)

 response = consumer.oauth2.post(
 f"{consumer.subscription_url}:pull", data={"maxMessages": max_messages},
)

 alerts = consumer.unpack_and_ack_messages(
 response, lighten_alerts=lighten_alerts, callback=callback,
) # List[dict]

 return iter(alerts)

How to integrate with TOM Toolkit

This assumes that you know how to run a TOM server/site using the
TOM Toolkit [https://tom-toolkit.readthedocs.io/en/stable/].

	Clone this repo and put the directory on your path.
(git clone https://github.com/mwvgroup/tom_pittgoogle.git)

	Add Pitt-Google to your TOM. Follow the TOM Toolkit instructions in the section
Using Our New Alert Broker [https://tom-toolkit.readthedocs.io/en/stable/brokers/create_broker.html#using-our-new-alert-broker].
Our modules were written following the instructions preceding that section.

	In your settings.py file:

	Add these to the TOM_ALERT_CLASSES list:

'tom_pittgoogle.broker_stream_rest.BrokerStreamRest',
'tom_pittgoogle.broker_stream_python.BrokerStreamPython',
'tom_pittgoogle.broker_database_python.BrokerDatabasePython',

	Add these additional settings:

see the Authentication docs for more info
GOOGLE_CLOUD_PROJECT = "pitt-broker-user-project" # user's project
PITTGOOGLE_OAUTH_CLIENT_ID = os.getenv("PITTGOOGLE_OAUTH_CLIENT_ID")
PITTGOOGLE_OAUTH_CLIENT_SECRET = os.getenv("PITTGOOGLE_OAUTH_CLIENT_SECRET")

	After running makemigrations, etc. and authenticating yourself,
navigate to the “Alerts” page on your TOM site. You should see three
new broker options corresponding to the three Pitt-Google classes
you added to the TOM_ALERT_CLASSES list.

Authentication

Users authenticate themselves by following an OAuth 2.0 workflow.
Authentication is required to make API calls.

	Requirements

	Authentication Workflow

Requirements

	The user must have a Google account (e.g., Gmail address) that is authorized make
API calls through the project that is defined by the GOOGLE_CLOUD_PROJECT
variable in the Django settings.py file.
Any project can be used, as long as the user is authorized.

	We have a test project setup that we are happy to add community members to,
for as long as that remains feasible.
Send Troy a request, and include your Google account info (Gmail address).

	Since this is still in dev: Contact Troy to be added to the OAuth’s list of
authorized test users, and to obtain the
PITTGOOGLE_OAUTH_CLIENT_ID and PITTGOOGLE_OAUTH_CLIENT_SECRET.
Include your Google account info (Gmail address).

Authentication Workflow

Note: Currently this is a bit painful because the user must:

	re-authenticate every time a query is run.

	interact via the command line. When running a query from the TOM site’s
“Query a Broker” page, the process will hang until the user follows the prompts on
the command line and completes the authentication. The site may temporarily
crash until this is completed.

(TODO: integrate the OAuth with Django, and automatically refresh tokens)

Workflow - The user will:

	Visit a URL, which will be displayed on the command line when the Consumer
class is initialized (currently, when the Broker’s fetch_alerts is called).

	Log in to their Google account. This authenticates their access to make API calls
through the project.

	Authorize this PittGoogleConsumer app/module to make API calls on their behalf.
This only needs to be done once for each API access “scope”
(Pub/Sub, BigQuery, and Logging).

	Respond to the prompt on the command line by entering the full URL of the webpage
they are redirected to after completing the above.

What happens next? - The Consumer:

	Completes the instantiation of an OAuth2Session,
which is used to either make HTTP requests directly, or instantiate a credentials
object for the Python client.

	Instantiates a Client object to make API calls with (Python methods only).

	Checks that it can successfully connect to the requested resource.

StreamRest

	BrokerStreamRest

	ConsumerStreamRest

Note

The Pitt-Google broker uses Pub/Sub to publish live streams, rather than Apache Kafka. See Pub/Sub Message Service for a basic overview.

BrokerStreamRest

TOM Toolkit broker to listen to a Pitt-Google Pub/Sub stream via the REST API.

Relies on ConsumerStreamRest to manage the connections and work with data.

See especially:

	BrokerStreamRest.request_alerts

	Pull alerts using a POST request with OAuth2, unpack, apply user filter.

	BrokerStreamRest.user_filter

	Apply the filter indicated by the form's parameters.

	
class tom_pittgoogle.broker_stream_rest.BrokerStreamRest

	Pitt-Google broker class to pull alerts from a stream via the REST API.

Base class: tom_alerts.alerts.GenericBroker

	
fetch_alerts(parameters)

	Entry point to pull and filter alerts.

	
form

	alias of tom_pittgoogle.broker_stream_rest.FilterAlertsForm

	
request_alerts(parameters)

	Pull alerts using a POST request with OAuth2, unpack, apply user filter.

	Returns

	alerts (List[dict])

	
to_generic_alert(alert)

	Map the Pitt-Google alert to a TOM GenericAlert.

	
static user_filter(alert_dict, parameters)

	Apply the filter indicated by the form’s parameters.

Used as the callback to BrokerStreamRest.unpack_and_ack_messages.

	Parameters

	
	alert_dict – Single alert, ZTF packet data as a dictionary.
The schema depends on the value of lighten_alerts passed to
BrokerStreamRest.unpack_and_ack_messages.
If lighten_alerts=False it is the original ZTF alert schema
(https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html).
If lighten_alerts=True the dict is flattened and extra
fields are dropped.

	parameters – parameters submitted by the user through the form.

	Returns

	alert_dict if it passes the filter, else None

	
class tom_pittgoogle.broker_stream_rest.FilterAlertsForm(*args, **kwargs)

	Basic form for filtering alerts.

Fields:

subscription_name (CharField)

classtar_threshold (FloatField)

classtar_gt_lt (ChoiceField)

max_results (IntegerField)

	
property media

	Return all media required to render the widgets on this form.

ConsumerStreamRest

Consumer class to manage Pub/Sub connections via REST, and work with message data.

Pub/Sub REST API docs: https://cloud.google.com/pubsub/docs/reference/rest

Used by BrokerStreamRest, but can be called independently.

Basic workflow:

consumer = ConsumerStreamRest(subscription_name)

response = consumer.oauth2.post(
 f"{consumer.subscription_url}:pull", data={"maxMessages": max_messages},
)

alerts = consumer.unpack_and_ack_messages(
 response, lighten_alerts=True, callback=user_filter,
) # List[dict]

See especially:

	ConsumerStreamRest.authenticate

	Guide user through authentication; create OAuth2Session for HTTP requests.

	ConsumerStreamRest.touch_subscription

	Make sure the subscription exists and we can connect.

	ConsumerStreamRest.unpack_and_ack_messages

	Unpack and acknowledge messages in response; run callback if present.

	
class tom_pittgoogle.consumer_stream_rest.ConsumerStreamRest(subscription_name)

	Consumer class to manage Pub/Sub connections and work with messages.

Initialization does the following:

	Authenticate the user. Create an OAuth2Session object for the user/broker
to make HTTP requests with.

	Make sure the subscription exists and we can connect. Create it, if needed.

	
authenticate()

	Guide user through authentication; create OAuth2Session for HTTP requests.

The user will need to visit a URL, authenticate themselves, and authorize
PittGoogleConsumer to make API calls on their behalf.

The user must have a Google account that is authorized make API calls
through the project defined by the GOOGLE_CLOUD_PROJECT variable in the
Django settings.py file. Any project can be used, as long as the user has
access.

Additional requirement because this is still in dev: The OAuth is restricted
to users registered with Pitt-Google, so contact us.

TODO: Integrate this with Django. For now, the user interacts via command line.

	
delete_subscription()

	Delete the subscription.

This is provided for the user’s convenience, but it is not necessary and is not
automatically called.

	Storage of unacknowledged Pub/Sub messages does not result in fees.

	Unused subscriptions automatically expire; default is 31 days.

	
touch_subscription()

	Make sure the subscription exists and we can connect.

If the subscription doesn’t exist, try to create one (in the user’s project)
that is attached to a topic of the same name in the Pitt-Google project.

Note that messages published before the subscription is created are not
available.

	
unpack_and_ack_messages(response, lighten_alerts=False, callback=None, **kwargs)

	Unpack and acknowledge messages in response; run callback if present.

If lighten_alerts is True, drop extra fields and flatten the alert dict.

callback is assumed to be a filter. It should accept an alert dict
and return the dict if the alert passes the filter, else return None.

StreamPython

	BrokerStreamPython

	ConsumerStreamPython

Note

The Pitt-Google broker uses Pub/Sub to publish live streams, rather than Apache Kafka. See Pub/Sub Message Service for a basic overview.

BrokerStreamPython

TOM Toolkit broker to listen to a Pitt-Google Pub/Sub stream via the Python client.

Relies on ConsumerStreamPython to manage the connections and work with data.

See especially:

	BrokerStreamPython.fetch_alerts

	Entry point to pull and filter alerts.

	BrokerStreamPython.user_filter

	Apply the filter indicated by the form's parameters.

	
class tom_pittgoogle.broker_stream_python.BrokerStreamPython

	Pitt-Google broker interface to pull alerts from Pub/Sub via the Python client.

Base class: tom_alerts.alerts.GenericBroker

	
fetch_alerts(parameters)

	Entry point to pull and filter alerts.

Pull alerts using a Python client, unpack, apply user filter.

This demo assumes that the real use-case is to save alerts to a database
rather than view them through a TOM site.
Therefore, the Consumer currently saves the alerts in real time,
and then simply returns a list of alerts after all messages are processed.
That list is then coerced into an iterator here.
If the user really cares about the iterator,
ConsumerStreamPython.stream_alerts can be tweaked to yield the alerts in
real time.

	
form

	alias of tom_pittgoogle.broker_stream_python.FilterAlertsForm

	
to_generic_alert(alert_dict)

	Map the Pitt-Google alert to a TOM GenericAlert.

	
to_target(alert_dict)

	Map the Pitt-Google alert to a TOM Target.

	
static user_filter(alert_dict, parameters)

	Apply the filter indicated by the form’s parameters.

Used as the callback to BrokerStreamPython.unpack_and_ack_messages.

	Parameters

	
	alert_dict – Single alert, ZTF packet data as a dictionary.
The schema depends on the value of lighten_alerts passed to
BrokerStreamPython.unpack_and_ack_messages.
If lighten_alerts=False it is the original ZTF alert schema
(https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html).
If lighten_alerts=True the dict is flattened and extra
fields are dropped.

	parameters – parameters submitted by the user through the form.

	Returns

	alert_dict if it passes the filter, else None

	
class tom_pittgoogle.broker_stream_python.FilterAlertsForm(*args, **kwargs)

	Basic form for filtering alerts.

Fields:

subscription_name (CharField)

classtar_threshold (FloatField)

classtar_gt_lt (ChoiceField)

max_results (IntegerField)

timeout (IntegerField)

max_backlog (IntegerField)

	
property media

	Return all media required to render the widgets on this form.

ConsumerStreamPython

Consumer class to pull Pub/Sub messages via a Python client, and work with data.

Pub/Sub Python Client docs: https://googleapis.dev/python/pubsub/latest/index.html

Used by BrokerStreamPython, but can be called independently.

Use-case: Save alerts to a database

The demo for this implementation assumes that the real use-case is to save alerts
to a database rather than view them through a TOM site.
Therefore, the Consumer currently saves the alerts in real time,
and then simply returns a list of alerts after all messages are processed.
That list is then coerced into an iterator by the Broker.
If the user really cares about the Broker’s iterator, stream_alerts can
be tweaked to yield the alerts in real time.

Basic workflow:

consumer = ConsumerStreamPython(subscription_name)

alert_dicts_list = consumer.stream_alerts(
 user_filter=user_filter,
 **kwargs,
)
alerts are processed and saved in real time. the list is returned for convenience.

See especially:

	ConsumerStreamPython.touch_subscription

	Make sure the subscription exists and we can connect.

	ConsumerStreamPython.stream_alerts

	Execute a streaming pull and process alerts through the callback.

	ConsumerStreamPython.callback

	Process a single alert; run user filter; save alert; acknowledge Pub/Sub msg.

	ConsumerStreamPython.save_alert

	Save the alert to a database.

	
class tom_pittgoogle.consumer_stream_python.ConsumerStreamPython(subscription_name, ztf_fields=None)

	Consumer class to manage Pub/Sub connections and work with messages.

Initialization does the following:

	Authenticate the user via OAuth 2.0.

	Create a google.cloud.pubsub_v1.SubscriberClient object.

	Create a queue.Queue object to communicate with the background thread
running the streaming pull.

	Make sure the subscription exists and we can connect. Create it, if needed.

To view logs, visit: https://console.cloud.google.com/logs

	Make sure you are logged in, and your project is selected in the dropdown
at the top.

	Click the “Log name” dropdown and select the subscription name you
instantiate this consumer with.

TODO: Give the user a standard logger.

	
authenticate_with_oauth()

	Guide user through authentication; create OAuth2Session for credentials.

The user will need to visit a URL, authenticate themselves, and authorize
PittGoogleConsumer to make API calls on their behalf.

The user must have a Google account that is authorized make API calls
through the project defined by the GOOGLE_CLOUD_PROJECT variable in the
Django settings.py file. Any project can be used, as long as the user has
access.

Additional requirement because this is still in dev: The OAuth is restricted
to users registered with Pitt-Google, so contact us.

TODO: Integrate this with Django. For now, the user interacts via command line.

	
callback(message)

	Process a single alert; run user filter; save alert; acknowledge Pub/Sub msg.

Used as the callback for the streaming pull.

	
delete_subscription()

	Delete the subscription.

This is provided for the user’s convenience, but it is not necessary and is not
automatically called.

	Storage of unacknowledged Pub/Sub messages does not result in fees.

	Unused subscriptions automatically expire; default is 31 days.

	
get_credentials(user_project)

	Create user credentials object from service account credentials or an OAuth.

Try service account credentials first. Fall back to OAuth.

	
save_alert(alert)

	Save the alert to a database.

	
stream_alerts(user_filter=None, user_callback=None, **kwargs)

	Execute a streaming pull and process alerts through the callback.

The streaming pull happens in a background thread. A queue.Queue is used
to communicate between threads and enforce the stopping condition(s).

	Parameters

	
	user_filter (Callable) – Used by callback to filter alerts before
saving. It should accept a single alert as a
dictionary (flat dict with fields determined by
ztf_fields attribute).
It should return the alert dict if it passes the
filter, else None.

	user_callback (Callable) – Used by callback to process alerts.
It should accept a single alert as a
dictionary (flat dict with fields determined by
ztf_fields attribute).
It should return True if the processing was
successful; else False.

	kwargs (dict) – User’s parameters. Should include the parameters
defined in BrokerStreamPython’s FilterAlertsForm.
There must be at least one stopping condition
(max_results or timeout), else the streaming pull
will run forever.

	
touch_subscription()

	Make sure the subscription exists and we can connect.

If the subscription doesn’t exist, try to create one (in the user’s project)
that is attached to a topic of the same name in the Pitt-Google project.

Note that messages published before the subscription is created are not
available.

DatabasePython

	BrokerDatabasePython

	ConsumerDatabasePython

BrokerDatabasePython

TOM Toolkit broker to query a BigQuery table via the Python API.

Relies on ConsumerDatabasePython to manage the connections and work with data.

See especially:

	BrokerDatabasePython.request_alerts

	Query alerts using the user filter and unpack.

	
class tom_pittgoogle.broker_database_python.BrokerDatabasePython

	Pitt-Google broker to query alerts from the database via the Python client.

Base class: tom_alerts.alerts.GenericBroker

	
fetch_alerts(parameters)

	Entry point to query and filter alerts.

	
form

	alias of tom_pittgoogle.broker_database_python.FilterAlertsForm

	
request_alerts(parameters)

	Query alerts using the user filter and unpack.

The SQL statement returned by the Consumer implements the current user filter.

	Returns

	alerts (List[dict])

	
to_generic_alert(alert)

	Map the Pitt-Google alert to a TOM GenericAlert.

	
class tom_pittgoogle.broker_database_python.FilterAlertsForm(*args, **kwargs)

	Basic form for filtering alerts; currently implemented in the SQL statement.

	Fields:
	objectId (CharField)

candid (IntegerField)

max_results (IntegerField)

	
property media

	Return all media required to render the widgets on this form.

ConsumerDatabasePython

Consumer class to manage BigQuery connections via Python client, and work with data.

BigQuery Python Client docs: https://googleapis.dev/python/bigquery/latest/index.html

Used by BrokerDatabasePython, but can be called independently.

Basic workflow:

consumer = ConsumerDatabasePython(table_name)

sql_stmnt, job_config = consumer.create_sql_stmnt(parameters)
query_job = consumer.client.query(sql_stmnt, job_config=job_config)

alerts = consumer.unpack_query(query_job) # List[dict]

See especially:

	ConsumerDatabasePython.authenticate

	Guide user through authentication; create OAuth2Session for credentials.

	ConsumerDatabasePython.create_sql_stmnt

	Create the SQL statement and a job config with the user's parameters.

	ConsumerDatabasePython.unpack_query

	Unpack alerts from query_job; run callback if present.

	
class tom_pittgoogle.consumer_database_python.ConsumerDatabasePython(table_name)

	Consumer class to query alerts from BigQuery, and manipulate them.

Initialization does the following:

	Authenticate the user via OAuth 2.0.

	Create a google.cloud.bigquery.Client object for the user/broker
to query database with.

	Check that the table exists and we can connect.

To view logs, visit: https://console.cloud.google.com/logs

	Make sure you are logged in, and your project is selected in the dropdown
at the top.

	Click the “Log name” dropdown and select the table name you instantiate this
consumer with.

TODO: Give the user a standard logger.

	
authenticate()

	Guide user through authentication; create OAuth2Session for credentials.

The user will need to visit a URL, authenticate themselves, and authorize
PittGoogleConsumer to make API calls on their behalf.

The user must have a Google account that is authorized make API calls
through the project defined by the GOOGLE_CLOUD_PROJECT variable in the
Django settings.py file. Any project can be used, as long as the user has
access.

Additional requirement because this is still in dev: The OAuth is restricted
to users registered with Pitt-Google, so contact us.

TODO: Integrate this with Django. For now, the user interacts via command line.

	
create_sql_stmnt(parameters)

	Create the SQL statement and a job config with the user’s parameters.

	
unpack_query(query_job, callback=None, **kwargs)

	Unpack alerts from query_job; run callback if present.

A basic filter is implemented directly in the SQL statement produced by
create_sql_stmnt. More complex filters could be implemented here via a
callback function.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tom_pittgoogle	

 	
 	
 tom_pittgoogle.broker_database_python	

 	
 	
 tom_pittgoogle.broker_stream_python	

 	
 	
 tom_pittgoogle.broker_stream_rest	

 	
 	
 tom_pittgoogle.consumer_database_python	

 	
 	
 tom_pittgoogle.consumer_stream_python	

 	
 	
 tom_pittgoogle.consumer_stream_rest	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | M
 | R
 | S
 | T
 | U

A

 	
 	authenticate() (tom_pittgoogle.consumer_database_python.ConsumerDatabasePython method)

 	(tom_pittgoogle.consumer_stream_rest.ConsumerStreamRest method)

 	
 	authenticate_with_oauth() (tom_pittgoogle.consumer_stream_python.ConsumerStreamPython method)

B

 	
 	BrokerDatabasePython (class in tom_pittgoogle.broker_database_python)

 	
 	BrokerStreamPython (class in tom_pittgoogle.broker_stream_python)

 	BrokerStreamRest (class in tom_pittgoogle.broker_stream_rest)

C

 	
 	callback() (tom_pittgoogle.consumer_stream_python.ConsumerStreamPython method)

 	ConsumerDatabasePython (class in tom_pittgoogle.consumer_database_python)

 	
 	ConsumerStreamPython (class in tom_pittgoogle.consumer_stream_python)

 	ConsumerStreamRest (class in tom_pittgoogle.consumer_stream_rest)

 	create_sql_stmnt() (tom_pittgoogle.consumer_database_python.ConsumerDatabasePython method)

D

 	
 	delete_subscription() (tom_pittgoogle.consumer_stream_python.ConsumerStreamPython method)

 	(tom_pittgoogle.consumer_stream_rest.ConsumerStreamRest method)

F

 	
 	fetch_alerts() (tom_pittgoogle.broker_database_python.BrokerDatabasePython method)

 	(tom_pittgoogle.broker_stream_python.BrokerStreamPython method)

 	(tom_pittgoogle.broker_stream_rest.BrokerStreamRest method)

 	FilterAlertsForm (class in tom_pittgoogle.broker_database_python)

 	(class in tom_pittgoogle.broker_stream_python)

 	(class in tom_pittgoogle.broker_stream_rest)

 	
 	form (tom_pittgoogle.broker_database_python.BrokerDatabasePython attribute)

 	(tom_pittgoogle.broker_stream_python.BrokerStreamPython attribute)

 	(tom_pittgoogle.broker_stream_rest.BrokerStreamRest attribute)

G

 	
 	get_credentials() (tom_pittgoogle.consumer_stream_python.ConsumerStreamPython method)

M

 	
 	media (tom_pittgoogle.broker_database_python.FilterAlertsForm property)

 	(tom_pittgoogle.broker_stream_python.FilterAlertsForm property)

 	(tom_pittgoogle.broker_stream_rest.FilterAlertsForm property)

 	
 module

 	tom_pittgoogle.broker_database_python

 	tom_pittgoogle.broker_stream_python

 	tom_pittgoogle.broker_stream_rest

 	tom_pittgoogle.consumer_database_python

 	tom_pittgoogle.consumer_stream_python

 	tom_pittgoogle.consumer_stream_rest

R

 	
 	request_alerts() (tom_pittgoogle.broker_database_python.BrokerDatabasePython method)

 	(tom_pittgoogle.broker_stream_rest.BrokerStreamRest method)

S

 	
 	save_alert() (tom_pittgoogle.consumer_stream_python.ConsumerStreamPython method)

 	
 	stream_alerts() (tom_pittgoogle.consumer_stream_python.ConsumerStreamPython method)

T

 	
 	to_generic_alert() (tom_pittgoogle.broker_database_python.BrokerDatabasePython method)

 	(tom_pittgoogle.broker_stream_python.BrokerStreamPython method)

 	(tom_pittgoogle.broker_stream_rest.BrokerStreamRest method)

 	to_target() (tom_pittgoogle.broker_stream_python.BrokerStreamPython method)

 	
 tom_pittgoogle.broker_database_python

 	module

 	
 tom_pittgoogle.broker_stream_python

 	module

 	
 tom_pittgoogle.broker_stream_rest

 	module

 	
 	
 tom_pittgoogle.consumer_database_python

 	module

 	
 tom_pittgoogle.consumer_stream_python

 	module

 	
 tom_pittgoogle.consumer_stream_rest

 	module

 	touch_subscription() (tom_pittgoogle.consumer_stream_python.ConsumerStreamPython method)

 	(tom_pittgoogle.consumer_stream_rest.ConsumerStreamRest method)

U

 	
 	unpack_and_ack_messages() (tom_pittgoogle.consumer_stream_rest.ConsumerStreamRest method)

 	unpack_query() (tom_pittgoogle.consumer_database_python.ConsumerDatabasePython method)

 	
 	user_filter() (tom_pittgoogle.broker_stream_python.BrokerStreamPython static method)

 	(tom_pittgoogle.broker_stream_rest.BrokerStreamRest static method)

Map a stream.models.Alert to DESC’s schema for ELAsTiCC

Schema Fields

	ELAsTiCC [https://docs.google.com/presentation/d/1FwOdELG-XgdNtySeIjF62bDRVU5EsCToi2Svo_kXA50/edit#slide=id.ge52201f94a_0_6]

	Alert [https://github.com/LSSTDESC/tom_desc/blob/u/tjr/alert_model/stream/models.py]

	ZTF [https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html]

	
	topic (broker topic)

	

	
	events (?)

	

	alertId (long int. Unique per broker?)

	identifier? (str)

	

	
	coordinates

	

	
	parsed_message (alert as a dict)

	

	
	raw_message (alert as bytes? full message packet? don’t care?)

	

	
	parsed (bool)

	

	
	timestamp

	ZTF’s publish timestamp in message attribute

	
	broker_ingest_timestamp

	

	
	broker_publish_timestamp

	

	
	created (DESC ingestion timestamp, auto-added)

	

	classifierNames (string)

	classifierNames (string. Extra)

	

	classifications

	(none?)

	

	10 (float)

	Bogus (float. Extra)

	

	20 (float)

	Real (float. Extra)

	

	11120 (float)

	SN-like (float. Extra)

	

	111120 (float)

	Ia (float. Extra)

	

	(… etc, all classes)

	(…)

	(…)

	(?)

	(?)

	candid (long int. DIA source ID, unique per alert.)

	(?)

	(?)

	objectId (string. DIA object ID)

Pub/Sub Message Service

The Pitt-Google broker uses Pub/Sub to produce live alert streams.
Pub/Sub is an asynchronous, publish–subscribe messaging service.
It serves the same function as Apache Kafka.
Here we outline the basics of Pub/Sub and highlight some differences with Kafka.
See Google’s What is Pub/Sub? [https://cloud.google.com/pubsub/docs/overview] for more information.

Pub/Sub is a messaging service.
Users can simply publish and subscribe to message streams through the APIs, with no need to run servers or manage the data distribution.

Message delivery in Pub/Sub vs. Kafka:

Pub/Sub subscriptions are processed on a per-message basis.
When a subscriber “pulls” a subscription, Pub/Sub leases messages to the subscriber client.
Once the subscriber processes a message, it sends an acknowledgement of success back to Pub/Sub.
If no such acknowledgement is received within the allotted time, Pub/Sub will redeliver the message at some point in the future.
Note that message ordering is not guaranteed*.

By contrast, Kafka separates topics into partitions, delivers messages to a consumer from a given
partition, in order, and tracks offsets to record the last message sent to the consumer.

Results of these differences:

	With Pub/Sub, messages only leave the subscription after they have been successfully processed.
If the client experiences an error while processing a message, the message is not lost (assuming it has not already been acknowledged), and the client does not have to “rewind” the stream to the correct offset to get it back.
The message will be automatically redelivered.

	The parallelism of Kafka consumers is limited by the number of partitions in the topic.
There is no such constraint with Pub/Sub.

* Pub/Sub does offer a message ordering option, but it is not the default and we have not enabled it on our streams.

Create a Pub/Sub stream with ELAsTiCC’s Avro schema

Reference links:

	pubsub-create-avro-schema [https://cloud.google.com/pubsub/docs/samples/pubsub-create-avro-schema]

	validating schemas [https://cloud.google.com/pubsub/docs/schemas#validating]

	pubsub-create-topic-with-schema [https://cloud.google.com/pubsub/docs/samples/pubsub-create-topic-with-schema]

	pubsub-publish-avro-records [https://cloud.google.com/pubsub/docs/samples/pubsub-publish-avro-records]

	pubsub-subscribe-avro-records [https://cloud.google.com/pubsub/docs/samples/pubsub-subscribe-avro-records]

Setup

import os
import fastavro
from google.cloud.pubsub import SchemaServiceClient
from google.pubsub_v1.types import Schema

broker_utils.gcp_utils uses pubsub v1.x but we need v2.x.
Import from troy/python_fncs
from python_fncs import pubsub as gcp_utils

project_id = os.getenv('GOOGLE_CLOUD_PROJECT')
schema_id = "elasticc-schema"
topic_id = "elasticc" # schema attached to topic, not in msg header
topic_id_msghdr = "elasticc-header" # schema in msg header, not attached to topic

avsc_file = "/Users/troyraen/Documents/broker/desc-plastic/Examples/plasticc_schema/lsst.v4_1.brokerClassification.avsc"
test_msg_file = "test_classification_alert.avro"

Create the schema in GCP

project_path = f"projects/{project_id}"

Read a JSON-formatted Avro schema file as a string.
with open(avsc_file, "rb") as f:
 avsc_source = f.read().decode("utf-8")

create the schema
schema_client = SchemaServiceClient()
schema_path = schema_client.schema_path(project_id, schema_id)
schema = Schema(name=schema_path, type_=Schema.Type.AVRO, definition=avsc_source)
result = schema_client.create_schema(
 request={"parent": project_path, "schema": schema, "schema_id": schema_id}
)
schema_client.delete_schema(request={"name": schema_path})
schema_in = schema_client.get_schema(request={"name": schema_path})

Create topics (one with schema attached, one without); create subscriptions

from google.cloud.pubsub import PublisherClient
from google.pubsub_v1.types import Encoding

publisher_client = PublisherClient()

topic with schema attached
topic_path = publisher_client.topic_path(project_id, topic_id)
encoding = Encoding.BINARY
publisher_client.create_topic(
 request={
 "name": topic_path,
 "schema_settings": {"schema": schema_path, "encoding": encoding},
 }
)
gcp_utils.create_subscription(topic_id)

topic without schema attached. schema should be in message header.
topic_path_msghdr = publisher_client.topic_path(project_id, topic_id_msghdr)
publisher_client.create_topic(request={"name": topic_path_msghdr,})
gcp_utils.create_subscription(topic_id_msghdr)

Create a fake alert and publish it

fastavro_schema = fastavro.schema.load_schema(avsc_file)

create the data packet
alertId = 123456789
bogus, real = 0.1, 0.9
prob_SN, prob_Ia = 0.8, 0.6

class_dict = {
 "alertId": alertId,
 "classifierNames": "RealBogus_v0.1, SuperNNova_v1.3", # comma-separated string
 "classifications": { # dict with a single item
 "classificationDict": # list of dicts
 [
 {"10": bogus},
 {"20": real},
 {"11120": prob_SN},
 {"111120": prob_Ia},
]
 }
}

simplify the schema
class_dict_alt = {
 "alertId": alertId,
 "classifierNames": "RealBogus_v0.1, supernnova_v1.3", # comma-separated string
 "classifications": [# list of dicts
 {"10": bogus},
 {"20": real},
 {"11120": prob_SN},
 {"111120": prob_Ia},
]
}

simplify again
class_dict_alt2 = {
 "alertId": alertId,
 "classifierNames": "RealBogus_v0.1, supernnova_v1.3", # comma-separated string
 "classifications": { # dict
 "10": bogus,
 "20": real,
 "11120": prob_SN,
 "111120": prob_Ia,
 }
}

publish message to topic with schema attached
fout = io.BytesIO()
fastavro.schemaless_writer(fout, fastavro_schema, class_dict)
fout.seek(0)
data = fout.getvalue()
future = publisher_client.publish(topic_path, data)

publish message to topic without schema attached
fout = io.BytesIO()
fastavro.writer(fout, fastavro_schema, [class_dict])
fout.seek(0)
data = fout.getvalue()
future = publisher_client.publish(topic_path_msghdr, data)

write to file
with open(test_msg_file, 'wb') as out:
 fastavro.writer(out, fastavro_schema, records)

Pull the messages

topic with schema attached
msgs = gcp_utils.pull_pubsub(topic_id)
msg = msgs[0]
byin = io.BytesIO(msg)
class_dict_in = fastavro.schemaless_reader(byin, fastavro_schema)
pubsub_schema = schema_client.get_schema(request={"name": schema_path})
pubsub_schema_dict = json.loads(pubsub_schema.definition)
class_dict_in = fastavro.schemaless_reader(byin, pubsub_schema_dict)

topic without schema attached
msgs = gcp_utils.pull_pubsub(topic_id_msghdr)
msg = msgs[0]
byin = io.BytesIO(msg)
for record in fastavro.reader(byin):
 class_dict_alt_in = record
 break

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Index for Troy Raen’s Docs

 		
 Connecting to TOM Toolkit

 		
 Register an app

 		
 Build in RTD

 		
 Run StreamPython locally

 		
 Message size

 		
 Basic Code Workflow

 		
 How to integrate with TOM Toolkit

 		
 Authentication

 		
 Requirements

 		
 Authentication Workflow

 		
 StreamRest

 		
 BrokerStreamRest

 		
 ConsumerStreamRest

 		
 StreamPython

 		
 BrokerStreamPython

 		
 ConsumerStreamPython

 		
 DatabasePython

 		
 BrokerDatabasePython

 		
 ConsumerDatabasePython

