
tom_pittgoogle
Release v0.1.0

Troy Raen

Oct 08, 2021

OVERVIEW

1 Basic Overview 3

Python Module Index 15

Index 17

i

ii

tom_pittgoogle, Release v0.1.0

This repo contains 3 proof-of-concept implementations of a TOM Toolkit GenericBroker class which fetch alerts
from Pitt-Google.

Contact Troy Raen with questions or for authentication access (Slack @troyraen, or troy.raen@pitt.edu).

OVERVIEW 1

mailto:troy.raen@pitt.edu

tom_pittgoogle, Release v0.1.0

2 OVERVIEW

CHAPTER

ONE

BASIC OVERVIEW

Table 1: TOM Broker 3 ways
Implementation Connects to Via Comments
StreamRest Pub/Sub

streams
REST API Closest to “standard” implementation using HTTP

requests. Uses batch-style message pulls.
StreamPython Pub/Sub

streams
Python client Recommended for listening to a full night’s

stream. Uses a streaming pull in a background
thread.

DatabasePython BigQuery
database

Python client

Each implementation relies on 2 classes, a Broker and a Consumer:

Table 2: 2 classes for each implementation
Broker Consumer

• Fetches alerts from Pitt-Google using
a Consumer

• Handles the stream/database connections and unpacks the re-
turned data.

• Base class: tom_alerts.alerts.
GenericBroker

• Python methods use Google’s client APIs (Pub/Sub, Big-
Query)

• REST method uses a requests_oauthlib.
OAuth2Session object for HTTP requests

Here we use Broker and Consumer generically to refer to any of the specific implementations, which have names like
BrokerStreamRest.

1.1 Basic Code Workflow

Each implementation does things a bit differently, but they share a basic workflow:

The Broker instantiates a Consumer and uses it to fetch, unpack, and process alerts.

The Consumer can accept a user filter and return only alerts that pass.

Here is a compact but working example of a Broker’s fetch_alerts method for the StreamRest implementation.

3

https://googleapis.dev/python/pubsub/latest/index.html
https://googleapis.dev/python/bigquery/latest/index.html
https://googleapis.dev/python/bigquery/latest/index.html

tom_pittgoogle, Release v0.1.0

def fetch_alerts(self):
from consumer_stream_rest import ConsumerStreamRest

subscription_name = "ztf-loop"
max_messages = 10
lighten_alerts = True # flatten the alert dict and drop extra fields. optional.
If you pass a callback function, the Consumer will run each alert through it.
Optional. Useful for user filters. Here's a basic demo.
def user_filter(alert_dict):

passes_filter = True
if passes_filter:

return alert_dict
else:

return None
callback = user_filter

consumer = ConsumerStreamRest(subscription_name)

response = consumer.oauth2.post(
f"{consumer.subscription_url}:pull", data={"maxMessages": max_messages},

)

alerts = consumer.unpack_and_ack_messages(
response, lighten_alerts=lighten_alerts, callback=callback,

) # List[dict]

return iter(alerts)

1.2 How to integrate with TOM Toolkit

This assumes that you know how to run a TOM server/site using the TOM Toolkit.

1. Clone this repo and put the directory on your path. (git clone https://github.com/mwvgroup/
tom_pittgoogle.git)

2. Add Pitt-Google to your TOM. Follow the TOM Toolkit instructions in the section Using Our New Alert Broker.
Our modules were written following the instructions preceding that section.

• In your settings.py file:

– Add these to the TOM_ALERT_CLASSES list:

'tom_pittgoogle.broker_stream_rest.BrokerStreamRest',
'tom_pittgoogle.broker_stream_python.BrokerStreamPython',
'tom_pittgoogle.broker_database_python.BrokerDatabasePython',

– Add these additional settings:

see the Authentication docs for more info
GOOGLE_CLOUD_PROJECT = "pitt-broker-user-project" # user's project
PITTGOOGLE_OAUTH_CLIENT_ID = os.getenv("PITTGOOGLE_OAUTH_CLIENT_ID")
PITTGOOGLE_OAUTH_CLIENT_SECRET = os.getenv("PITTGOOGLE_OAUTH_CLIENT_SECRET")

4 Chapter 1. Basic Overview

https://tom-toolkit.readthedocs.io/en/stable/
https://tom-toolkit.readthedocs.io/en/stable/brokers/create_broker.html#using-our-new-alert-broker

tom_pittgoogle, Release v0.1.0

3. After running makemigrations, etc. and authenticating yourself, navigate to the “Alerts” page on your TOM
site. You should see three new broker options corresponding to the three Pitt-Google classes you added to the
TOM_ALERT_CLASSES list.

1.3 Authentication

Users authenticate themselves by following an OAuth 2.0 workflow. Authentication is required to make API calls.

• Requirements

• Authentication Workflow

1.3.1 Requirements

1. The user must have a Google account (e.g., Gmail address) that is authorized make API calls through the project
that is defined by the GOOGLE_CLOUD_PROJECT variable in the Django settings.py file. Any project can be
used, as long as the user is authorized.

• We have a test project setup that we are happy to add community members to, for as long as that remains
feasible. Send Troy a request, and include your Google account info (Gmail address).

2. Since this is still in dev: Contact Troy to be added to the OAuth’s list of authorized test users, and to obtain
the PITTGOOGLE_OAUTH_CLIENT_ID and PITTGOOGLE_OAUTH_CLIENT_SECRET. Include your Google account
info (Gmail address).

1.3.2 Authentication Workflow

Note: Currently this is a bit painful because the user must:

• re-authenticate every time a query is run.

• interact via the command line. When running a query from the TOM site’s “Query a Broker” page, the process
will hang until the user follows the prompts on the command line and completes the authentication. The
site may temporarily crash until this is completed.

(TODO: integrate the OAuth with Django, and automatically refresh tokens)

Workflow - The user will:

1. Visit a URL, which will be displayed on the command line when the Consumer class is initialized (currently,
when the Broker’s fetch_alerts is called).

2. Log in to their Google account. This authenticates their access to make API calls through the project.

3. Authorize this PittGoogleConsumer app/module to make API calls on their behalf. This only needs to be done
once for each API access “scope” (Pub/Sub, BigQuery, and Logging).

4. Respond to the prompt on the command line by entering the full URL of the webpage they are redirected to after
completing the above.

What happens next? - The Consumer:

1. Completes the instantiation of an OAuth2Session, which is used to either make HTTP requests directly, or
instantiate a credentials object for the Python client.

2. Instantiates a Client object to make API calls with (Python methods only).

1.3. Authentication 5

tom_pittgoogle, Release v0.1.0

3. Checks that it can successfully connect to the requested resource.

1.4 StreamRest

• BrokerStreamRest

• ConsumerStreamRest

1.4.1 BrokerStreamRest

TOM Toolkit broker to listen to a Pitt-Google Pub/Sub stream via the REST API.

Relies on ConsumerStreamRest to manage the connections and work with data.

See especially:

BrokerStreamRest.request_alerts Pull alerts using a POST request with OAuth2, unpack,
apply user filter.

BrokerStreamRest.user_filter Apply the filter indicated by the form's parameters.

class tom_pittgoogle.broker_stream_rest.BrokerStreamRest
Pitt-Google broker class to pull alerts from a stream via the REST API.

Base class: tom_alerts.alerts.GenericBroker

fetch_alerts(parameters)
Entry point to pull and filter alerts.

form
alias of tom_pittgoogle.broker_stream_rest.FilterAlertsForm

request_alerts(parameters)
Pull alerts using a POST request with OAuth2, unpack, apply user filter.

Returns alerts (List[dict])

to_generic_alert(alert)
Map the Pitt-Google alert to a TOM GenericAlert.

static user_filter(alert_dict, parameters)
Apply the filter indicated by the form’s parameters.

Used as the callback to BrokerStreamRest.unpack_and_ack_messages.

Parameters

• alert_dict – Single alert, ZTF packet data as a dictionary. The schema depends on
the value of lighten_alerts passed to BrokerStreamRest.unpack_and_ack_messages. If
lighten_alerts=False it is the original ZTF alert schema (https://zwickytransientfacility.
github.io/ztf-avro-alert/schema.html). If lighten_alerts=True the dict is flattened and ex-
tra fields are dropped.

• parameters – parameters submitted by the user through the form.

Returns alert_dict if it passes the filter, else None

6 Chapter 1. Basic Overview

https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html
https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html

tom_pittgoogle, Release v0.1.0

class tom_pittgoogle.broker_stream_rest.FilterAlertsForm(*args, **kwargs)
Basic form for filtering alerts.

Fields:

subscription_name (CharField)

classtar_threshold (FloatField)

classtar_gt_lt (ChoiceField)

max_results (IntegerField)

property media
Return all media required to render the widgets on this form.

1.4.2 ConsumerStreamRest

Consumer class to manage Pub/Sub connections via REST, and work with message data.

Pub/Sub REST API docs: https://cloud.google.com/pubsub/docs/reference/rest

Used by BrokerStreamRest, but can be called independently.

Basic workflow:

consumer = ConsumerStreamRest(subscription_name)

response = consumer.oauth2.post(
f"{consumer.subscription_url}:pull", data={"maxMessages": max_messages},

)

alerts = consumer.unpack_and_ack_messages(
response, lighten_alerts=True, callback=user_filter,

) # List[dict]

See especially:

ConsumerStreamRest.authenticate Guide user through authentication; create
OAuth2Session for HTTP requests.

ConsumerStreamRest.get_create_subscription Make sure the subscription exists and we can connect.
ConsumerStreamRest.unpack_and_ack_messages Unpack and acknowledge messages in response; run

callback if present.

class tom_pittgoogle.consumer_stream_rest.ConsumerStreamRest(subscription_name)
Consumer class to manage Pub/Sub connections and work with messages.

Initialization does the following:

• Authenticate the user. Create an OAuth2Session object for the user/broker to make HTTP requests with.

• Make sure the subscription exists and we can connect. Create it, if needed.

authenticate()
Guide user through authentication; create OAuth2Session for HTTP requests.

The user will need to visit a URL, authenticate themselves, and authorize PittGoogleConsumer to make
API calls on their behalf.

The user must have a Google account that is authorized make API calls through the project defined by the

1.4. StreamRest 7

https://cloud.google.com/pubsub/docs/reference/rest

tom_pittgoogle, Release v0.1.0

GOOGLE_CLOUD_PROJECT variable in the Django settings.py file. Any project can be used, as long as
the user has access.

Additional requirement because this is still in dev: The OAuth is restricted to users registered with Pitt-
Google, so contact us.

TODO: Integrate this with Django. For now, the user interacts via command line.

delete_subscription()
Delete the subscription.

This is provided for the user’s convenience, but it is not necessary and is not automatically called.

• Storage of unacknowledged Pub/Sub messages does not result in fees.

• Unused subscriptions automatically expire; default is 31 days.

get_create_subscription()
Make sure the subscription exists and we can connect.

If the subscription doesn’t exist, try to create one (in the user’s project) that is attached to a topic of the
same name in the Pitt-Google project.

Note that messages published before the subscription is created are not available.

unpack_and_ack_messages(response, lighten_alerts=False, callback=None, **kwargs)
Unpack and acknowledge messages in response; run callback if present.

If lighten_alerts is True, drop extra fields and flatten the alert dict.

callback is assumed to be a filter. It should accept an alert dict and return the dict if the alert passes the
filter, else return None.

1.5 StreamPython

• BrokerStreamPython

• ConsumerStreamPython

1.5.1 BrokerStreamPython

TOM Toolkit broker to listen to a Pitt-Google Pub/Sub stream via the Python client.

Relies on ConsumerStreamPython to manage the connections and work with data.

See especially:

BrokerStreamPython.fetch_alerts Entry point to pull and filter alerts.
BrokerStreamPython.user_filter Apply the filter indicated by the form's parameters.

class tom_pittgoogle.broker_stream_python.BrokerStreamPython
Pitt-Google broker interface to pull alerts from Pub/Sub via the Python client.

Base class: tom_alerts.alerts.GenericBroker

fetch_alerts(parameters)
Entry point to pull and filter alerts.

8 Chapter 1. Basic Overview

tom_pittgoogle, Release v0.1.0

Pull alerts using a Python client, unpack, apply user filter.

This demo assumes that the real use-case is to save alerts to a database rather than view them through a
TOM site. Therefore, the Consumer currently saves the alerts in real time, and then simply returns a list of
alerts after all messages are processed. That list is then coerced into an iterator here. If the user really cares
about the iterator, ConsumerStreamPython.stream_alerts can be tweaked to yield the alerts in real time.

form
alias of tom_pittgoogle.broker_stream_python.FilterAlertsForm

to_generic_alert(alert)
Map the Pitt-Google alert to a TOM GenericAlert.

static user_filter(alert_dict, parameters)
Apply the filter indicated by the form’s parameters.

Used as the callback to BrokerStreamPython.unpack_and_ack_messages.

Parameters

• alert_dict – Single alert, ZTF packet data as a dictionary. The schema depends on
the value of lighten_alerts passed to BrokerStreamPython.unpack_and_ack_messages. If
lighten_alerts=False it is the original ZTF alert schema (https://zwickytransientfacility.
github.io/ztf-avro-alert/schema.html). If lighten_alerts=True the dict is flattened and extra
fields are dropped.

• parameters – parameters submitted by the user through the form.

Returns alert_dict if it passes the filter, else None

class tom_pittgoogle.broker_stream_python.FilterAlertsForm(*args, **kwargs)
Basic form for filtering alerts.

Fields:

subscription_name (CharField)

classtar_threshold (FloatField)

classtar_gt_lt (ChoiceField)

max_results (IntegerField)

timeout (IntegerField)

max_backlog (IntegerField)

save_metadata (ChoiceField)

property media
Return all media required to render the widgets on this form.

1.5.2 ConsumerStreamPython

Consumer class to manage Pub/Sub connections via a Python client, and work with data.

Pub/Sub Python Client docs: https://googleapis.dev/python/pubsub/latest/index.html

Used by BrokerStreamPython, but can be called independently.

Use-case: Save alerts to a database

1.5. StreamPython 9

https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html
https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html
https://googleapis.dev/python/pubsub/latest/index.html

tom_pittgoogle, Release v0.1.0

This demo assumes that the real use-case is to save alerts to a database rather than view them through a
TOM site. Therefore, the Consumer currently saves the alerts in real time, and then simply returns a list
of alerts after all messages are processed. That list is then coerced into an iterator by the Broker. If the
user really cares about the Broker’s iterator, stream_alerts can be tweaked to yield the alerts in real time.

Basic workflow:

consumer = ConsumerStreamPython(subscription_name)

alert_dicts_list = consumer.stream_alerts(
lighten_alerts=True,
user_filter=user_filter,
parameters=parameters,

)
alerts are processed and saved in real time. the list is returned for convenience.

See especially:

ConsumerStreamPython.authenticate Guide user through authentication; create
OAuth2Session for credentials.

ConsumerStreamPython.
get_create_subscription

Make sure the subscription exists and we can connect.

ConsumerStreamPython.stream_alerts Execute a streaming pull and process alerts through the
callback.

ConsumerStreamPython.callback Process a single alert; run user filter; save alert; acknowl-
edge Pub/Sub msg.

ConsumerStreamPython.save_alert Save the alert to a database.

class tom_pittgoogle.consumer_stream_python.ConsumerStreamPython(subscription_name)
Consumer class to manage Pub/Sub connections and work with messages.

Initialization does the following:

• Authenticate the user via OAuth 2.0.

• Create a google.cloud.pubsub_v1.SubscriberClient object.

• Create a queue.Queue object to communicate with the background thread running the streaming pull.

• Make sure the subscription exists and we can connect. Create it, if needed.

To view logs, visit: https://console.cloud.google.com/logs

• Make sure you are logged in, and your project is selected in the dropdown at the top.

• Click the “Log name” dropdown and select the subscription name you instantiate this consumer with.

TODO: Give the user a standard logger.

authenticate()
Guide user through authentication; create OAuth2Session for credentials.

The user will need to visit a URL, authenticate themselves, and authorize PittGoogleConsumer to make
API calls on their behalf.

The user must have a Google account that is authorized make API calls through the project defined by the
GOOGLE_CLOUD_PROJECT variable in the Django settings.py file. Any project can be used, as long as
the user has access.

10 Chapter 1. Basic Overview

https://console.cloud.google.com/logs

tom_pittgoogle, Release v0.1.0

Additional requirement because this is still in dev: The OAuth is restricted to users registered with Pitt-
Google, so contact us.

TODO: Integrate this with Django. For now, the user interacts via command line.

callback(message)
Process a single alert; run user filter; save alert; acknowledge Pub/Sub msg.

Used as the callback for the streaming pull.

delete_subscription()
Delete the subscription.

This is provided for the user’s convenience, but it is not necessary and is not automatically called.

• Storage of unacknowledged Pub/Sub messages does not result in fees.

• Unused subscriptions automatically expire; default is 31 days.

get_create_subscription()
Make sure the subscription exists and we can connect.

If the subscription doesn’t exist, try to create one (in the user’s project) that is attached to a topic of the
same name in the Pitt-Google project.

Note that messages published before the subscription is created are not available.

save_alert(alert)
Save the alert to a database.

stream_alerts(lighten_alerts=False, user_filter=None, parameters=None)
Execute a streaming pull and process alerts through the callback.

The streaming pull happens in a background thread. A queue.Queue is used to communicate between
threads and enforce the stopping condition(s).

Parameters

• lighten_alerts (bool) – If True, drop extra fields and flatten the alert dict

• user_filter (Callable) – Used by callback to filter alerts before saving. It should
accept a single alert (ZTF packet data) as a dictionary. The schema depends on the
value of lighten_alerts. If lighten_alerts=False it is the original ZTF alert schema (https:
//zwickytransientfacility.github.io/ztf-avro-alert/schema.html). If lighten_alerts=True the
dict is flattened and extra fields are dropped. It should return the alert dict if it passes the
filter, else None.

• parameters (dict) – User’s parameters. Must include the parameters defined in the Bro-
ker’s FilterAlertsForm.

1.6 DatabasePython

• BrokerDatabasePython

• ConsumerDatabasePython

1.6. DatabasePython 11

https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html
https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html

tom_pittgoogle, Release v0.1.0

1.6.1 BrokerDatabasePython

TOM Toolkit broker to query a BigQuery table via the Python API.

Relies on ConsumerDatabasePython to manage the connections and work with data.

See especially:

BrokerDatabasePython.request_alerts Query alerts using the user filter and unpack.

class tom_pittgoogle.broker_database_python.BrokerDatabasePython
Pitt-Google broker to query alerts from the database via the Python client.

Base class: tom_alerts.alerts.GenericBroker

fetch_alerts(parameters)
Entry point to query and filter alerts.

form
alias of tom_pittgoogle.broker_database_python.FilterAlertsForm

request_alerts(parameters)
Query alerts using the user filter and unpack.

The SQL statement returned by the Consumer implements the current user filter.

Returns alerts (List[dict])

to_generic_alert(alert)
Map the Pitt-Google alert to a TOM GenericAlert.

class tom_pittgoogle.broker_database_python.FilterAlertsForm(*args, **kwargs)
Basic form for filtering alerts; currently implemented in the SQL statement.

Fields: objectId (CharField)

candid (IntegerField)

max_results (IntegerField)

property media
Return all media required to render the widgets on this form.

1.6.2 ConsumerDatabasePython

Consumer class to manage BigQuery connections via Python client, and work with data.

BigQuery Python Client docs: https://googleapis.dev/python/bigquery/latest/index.html

Used by BrokerDatabasePython, but can be called independently.

Basic workflow:

consumer = ConsumerDatabasePython(table_name)

sql_stmnt, job_config = consumer.create_sql_stmnt(parameters)
query_job = consumer.client.query(sql_stmnt, job_config=job_config)

alerts = consumer.unpack_query(query_job) # List[dict]

12 Chapter 1. Basic Overview

https://googleapis.dev/python/bigquery/latest/index.html

tom_pittgoogle, Release v0.1.0

See especially:

ConsumerDatabasePython.authenticate Guide user through authentication; create
OAuth2Session for credentials.

ConsumerDatabasePython.create_sql_stmnt Create the SQL statement and a job config with the user's
parameters.

ConsumerDatabasePython.unpack_query Unpack alerts from query_job; run callback if present.

class tom_pittgoogle.consumer_database_python.ConsumerDatabasePython(table_name)
Consumer class to query alerts from BigQuery, and manipulate them.

Initialization does the following:

• Authenticate the user via OAuth 2.0.

• Create a google.cloud.bigquery.Client object for the user/broker to query database with.

• Check that the table exists and we can connect.

To view logs, visit: https://console.cloud.google.com/logs

• Make sure you are logged in, and your project is selected in the dropdown at the top.

• Click the “Log name” dropdown and select the table name you instantiate this consumer with.

TODO: Give the user a standard logger.

authenticate()
Guide user through authentication; create OAuth2Session for credentials.

The user will need to visit a URL, authenticate themselves, and authorize PittGoogleConsumer to make
API calls on their behalf.

The user must have a Google account that is authorized make API calls through the project defined by the
GOOGLE_CLOUD_PROJECT variable in the Django settings.py file. Any project can be used, as long as
the user has access.

Additional requirement because this is still in dev: The OAuth is restricted to users registered with Pitt-
Google, so contact us.

TODO: Integrate this with Django. For now, the user interacts via command line.

create_sql_stmnt(parameters)
Create the SQL statement and a job config with the user’s parameters.

unpack_query(query_job, callback=None, **kwargs)
Unpack alerts from query_job; run callback if present.

A basic filter is implemented directly in the SQL statement produced by create_sql_stmnt. More complex
filters could be implemented here via a callback function.

1.6. DatabasePython 13

https://console.cloud.google.com/logs

tom_pittgoogle, Release v0.1.0

14 Chapter 1. Basic Overview

PYTHON MODULE INDEX

t
tom_pittgoogle.broker_database_python, 12
tom_pittgoogle.broker_stream_python, 8
tom_pittgoogle.broker_stream_rest, 6
tom_pittgoogle.consumer_database_python, 12
tom_pittgoogle.consumer_stream_python, 9
tom_pittgoogle.consumer_stream_rest, 7

15

tom_pittgoogle, Release v0.1.0

16 Python Module Index

INDEX

A
authenticate() (tom_pittgoogle.consumer_database_python.ConsumerDatabasePython

method), 13
authenticate() (tom_pittgoogle.consumer_stream_python.ConsumerStreamPython

method), 10
authenticate() (tom_pittgoogle.consumer_stream_rest.ConsumerStreamRest

method), 7

B
BrokerDatabasePython (class in

tom_pittgoogle.broker_database_python),
12

BrokerStreamPython (class in
tom_pittgoogle.broker_stream_python), 8

BrokerStreamRest (class in
tom_pittgoogle.broker_stream_rest), 6

C
callback() (tom_pittgoogle.consumer_stream_python.ConsumerStreamPython

method), 11
ConsumerDatabasePython (class in

tom_pittgoogle.consumer_database_python),
13

ConsumerStreamPython (class in
tom_pittgoogle.consumer_stream_python),
10

ConsumerStreamRest (class in
tom_pittgoogle.consumer_stream_rest), 7

create_sql_stmnt() (tom_pittgoogle.consumer_database_python.ConsumerDatabasePython
method), 13

D
delete_subscription()

(tom_pittgoogle.consumer_stream_python.ConsumerStreamPython
method), 11

delete_subscription()
(tom_pittgoogle.consumer_stream_rest.ConsumerStreamRest
method), 8

F
fetch_alerts() (tom_pittgoogle.broker_database_python.BrokerDatabasePython

method), 12

fetch_alerts() (tom_pittgoogle.broker_stream_python.BrokerStreamPython
method), 8

fetch_alerts() (tom_pittgoogle.broker_stream_rest.BrokerStreamRest
method), 6

FilterAlertsForm (class in
tom_pittgoogle.broker_database_python),
12

FilterAlertsForm (class in
tom_pittgoogle.broker_stream_python), 9

FilterAlertsForm (class in
tom_pittgoogle.broker_stream_rest), 6

form (tom_pittgoogle.broker_database_python.BrokerDatabasePython
attribute), 12

form (tom_pittgoogle.broker_stream_python.BrokerStreamPython
attribute), 9

form (tom_pittgoogle.broker_stream_rest.BrokerStreamRest
attribute), 6

G
get_create_subscription()

(tom_pittgoogle.consumer_stream_python.ConsumerStreamPython
method), 11

get_create_subscription()
(tom_pittgoogle.consumer_stream_rest.ConsumerStreamRest
method), 8

M
media (tom_pittgoogle.broker_database_python.FilterAlertsForm

property), 12
media (tom_pittgoogle.broker_stream_python.FilterAlertsForm

property), 9
media (tom_pittgoogle.broker_stream_rest.FilterAlertsForm

property), 7
module

tom_pittgoogle.broker_database_python, 12
tom_pittgoogle.broker_stream_python, 8
tom_pittgoogle.broker_stream_rest, 6
tom_pittgoogle.consumer_database_python,

12
tom_pittgoogle.consumer_stream_python, 9
tom_pittgoogle.consumer_stream_rest, 7

17

tom_pittgoogle, Release v0.1.0

R
request_alerts() (tom_pittgoogle.broker_database_python.BrokerDatabasePython

method), 12
request_alerts() (tom_pittgoogle.broker_stream_rest.BrokerStreamRest

method), 6

S
save_alert() (tom_pittgoogle.consumer_stream_python.ConsumerStreamPython

method), 11
stream_alerts() (tom_pittgoogle.consumer_stream_python.ConsumerStreamPython

method), 11

T
to_generic_alert() (tom_pittgoogle.broker_database_python.BrokerDatabasePython

method), 12
to_generic_alert() (tom_pittgoogle.broker_stream_python.BrokerStreamPython

method), 9
to_generic_alert() (tom_pittgoogle.broker_stream_rest.BrokerStreamRest

method), 6
tom_pittgoogle.broker_database_python
module, 12

tom_pittgoogle.broker_stream_python
module, 8

tom_pittgoogle.broker_stream_rest
module, 6

tom_pittgoogle.consumer_database_python
module, 12

tom_pittgoogle.consumer_stream_python
module, 9

tom_pittgoogle.consumer_stream_rest
module, 7

U
unpack_and_ack_messages()

(tom_pittgoogle.consumer_stream_rest.ConsumerStreamRest
method), 8

unpack_query() (tom_pittgoogle.consumer_database_python.ConsumerDatabasePython
method), 13

user_filter() (tom_pittgoogle.broker_stream_python.BrokerStreamPython
static method), 9

user_filter() (tom_pittgoogle.broker_stream_rest.BrokerStreamRest
static method), 6

18 Index

	Basic Overview
	Basic Code Workflow
	How to integrate with TOM Toolkit
	Authentication
	Requirements
	Authentication Workflow

	StreamRest
	BrokerStreamRest
	ConsumerStreamRest

	StreamPython
	BrokerStreamPython
	ConsumerStreamPython

	DatabasePython
	BrokerDatabasePython
	ConsumerDatabasePython

	Python Module Index
	Index

